Total nonpositivity of nonsingular matrices
نویسندگان
چکیده
منابع مشابه
Extremal properties of ray-nonsingular matrices
A ray–nonsingular matrix is a square complex matrix, A, such that each complex matrix whose entries have the same arguments as the corresponding entries of A is nonsingular. Extremal properties of ray– nonsingular matrices are studied in this paper. Combinatorial and probabilistic arguments are used to prove that if the order of a ray– nonsingular matrix is at least 6, then it must contain a ze...
متن کاملEfficient Generation of Random Nonsingular Matrices
We present an eecient algorithm for generating an n n nonsingular matrix uniformly over a nite eld. This algorithm is useful for several cryptographic and checking applications. Over GFF2] our algorithm runs in expected time M(n) + O(n 2), where M(n) is the time needed to multiply two n n matrices, and the expected number of random bits it uses is n 2 + 3. (Over other nite elds we use n 2 + O(1...
متن کاملInverse Closed Ray-nonsingular Cones of Matrices
A description is given of those ray-patterns, which will be called inverse closed ray-nonsingular, of complex matrices that contain invertible matrices only and are closed under inversion. Here, two n × n matrices are said to belong to the same ray-pattern if in each position either the entries of both matrices are zeros, or both entries are nonzero and their quotient is positive. Possible Jord...
متن کاملConvex Sets of Nonsingular and P–matrices
We show that the set r(A,B) (resp. c(A,B)) of square matrices whose rows (resp. columns) are independent convex combinations of ∗Work supported in part by Office of Naval Research contract N00014–90–J–1739 and NSF grant DMS 90–00899. †Work partially supported by NSERC grant 6–53121. Part of the work was done while this author was a Visiting Assistant Professor at the College of William and Mary.
متن کاملRow Coincidences in Nonsingular Binary Matrices
Nous étudions le nombre de cöıncidences des chiffres uns dans chaque paire de lignes différentes d’une matrice binaire et inversible dont toutes les lignes contiennent la même quantité d’unités. Nous présentons des bornes pour ce nombre, et nous démontrons que ces bornes peuvent être atteintes. Que la borne inférieure peut être réalisée est démontré par moyen des exemples. Quant à la borne supé...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2010
ISSN: 0024-3795
DOI: 10.1016/j.laa.2009.12.043